Benjamin Ostré : Etude biomécanique des palmes d’apnée

Dans le cadre de sa recherche en conception Mécanique et de ses enseignements a SeaTech, Benjamin Ostré a étudié avec un groupe d’étudiant ingénieur les palmes des apnéistes.

 

La thématique multi-disciplinaire des palmes à la particularité d’avoir été menée sur les trois ans de la formation initiale à SeaTech. Chaque année, pendant une trentaine d’heures, un groupe de 6 étudiants passionnés a fait progressé la problématique des palmes d’apnée, encadré par Benjamin Ostre, Maître de Conférence à SeaTech, chercheur au laboratoire COSMER, et soutenu par de très nombreux partenaires régionaux.

 

Pour en savoir plus : 

  • https://seatech.univ-tln.fr/On-retient-son-souffle-a-SeaTech.html
  • Article Subaqua

 

14-01-2021 : Séminaire Anthony SLADEN et Yann HELLO, CNRS GEOAZUR

 
 
 
 
 
 
 
Titre : Les câbles fibre optique pour l’étude des océans et du système Terre
 
La mesure acoustique distribuée (DAS) sur fibre optique est une approche instrumentale récente qui permet de transformer n’importe quelle fibre optique en réseau dense (m) de capteurs sismo-acoustiques (0.1-1000Hz) sur de grandes distances (50km+). Il s’agit donc d’une solution pouvant répondre aux problèmes de coût, complexité et fiabilité des meilleurs système actuels pour l’instrumentation du fond des océan. Après une introduction à la technologie et la présentation des premiers résultats, nous discuterons des limitations actuelles et des stratégies envisagées et envisageables pour les dépasser.
 
https://zoom.us/j/91807316648?pwd=MHVLeUFZMnQzc1ZDSTVJRDd1UmNGQT09

9-12-2020 : Soutenance de thèse de Marion POUPARD

Le Bureau des Études Doctorales a le plaisir de vous informer que
Madame Marion POUPARD
doctorante au laboratoire LIS Rattaché à l’École Doctorale 548 « Mer & Sciences »
Sous la direction de Monsieur Hervé GLOTIN, Professeur, Université de Toulon (France)

et

M. Thierry SORIANO, Professeur, Université de Toulon (France), Co-directeur de thèse

Co encadrée par M. Thierry LENGAGNE, Chargé de Recherche-HDR, CNRS, Université Lyon I

soutiendra sa thèse en vue de l’obtention du Grade de Docteur

Discipline : « Automatique, Signal, Productique, Robotique »

Spécialité : « Bioacoustique »

sur le thème

Contributions en Méthodes Bioacoustiques Multi-échelles : Spécifiques, Populationnelles, Individuelles et Comportementales
 

mercredi 09 décembre 2020 à 16h00

en visioconférence dont le lien de connexion est accessible sur demande
auprès du directeur de thèse glotin@univ-tln.fr 

devant un jury composé de

 

  • M. Yvan SIMARD, DR Ins. Sciences de la Mer, Rimouski, Univ. Québec, Canada, Rapporteur
  • Mme Clémentine VIGNAL, Pr. Ins. Ecologie & Sciences de l’Environnement de Paris, CNRS, Univ. Sorbonne, Rapporteur
  • Mme Renata SOUSA-LIMA, Pr. Lab. of Bioacoustics, Univ. Rio Grande do Norte, Brésil, Examinatrice
  • Mme Aurélie CELERIER, MC HDR Centre Ecologie Fonctionnelle & Evolutive, CNRS, Univ.
    Montpellier II, Examinatrice
  • M. Gianni PAVAN, Pr. Cent. Interdisci. Bioacustica & Ricerche Ambientali, Univ. Pavia, Italie, Examinatrice
  • M. Hervé GLOTIN, Pr. Lab. Informatique & Systèmes, CNRS, Univ. Toulon, Directeur de thèse
  • M. Thierry SORIANO, Pr. Lab. Conception Systèmes Mécaniques & Robotiques, Univ. Toulon, co-directeur de thèse
  • M. Thierry LENGAGNE, CR HDR Lab. Ecologie des Hydrosystèmes Naturels & Anthropisés, CNRS, Univ. Lyon I, co-encadrant de thèse
  • Mme Anne-Laure BEDU, Responsable de la Société Biosong, Invitée

Résumé

L’objectif de cette thèse est d’apporter différentes contributions méthodologiques en bioacoustique pour l’étude de la faune. En effet, la bioacoustique est une science récente, pluridisciplinaire et très efficace pour étudier et classifier un écosystème. Beaucoup d’études ont mis au point des procédés acoustiques pour étudier la faune à des échelles spécifiques, populationnelles, individuelles et comportementales.
Ce travail de thèse propose d’étudier différents cas d’études présents dans ces quatre échelles d’analyses.
L’objectif de cette thèse est de mettre en place des outils depuis la pose du matériel d’acquisition jusqu’à l’analyse des données pour l’ensemble des échelles présentées, de les discuter et de les mettre en perspective. La bioacoustique spécifique est illustrée ici par la classification automatique d’Orques, de Cachalots et d’oiseaux. Pour la bioacoustique populationnelle, la classification acoustique de clans d’Orques est étudiée. Puis l’échelle d’analyse s’affine et étudie les émissions sonores individuelles. Pour cela 3 cas d’études sont utilisés : la localisation individuelle d’Orques, de Cachalots et d’oiseaux. La dernière échelle est appelée bioacoustique comportementale, elle a pour but de mettre en corrélation des comportements avec des émissions acoustiques. Pour cela, l’influence du trafic maritime sur les Dauphins tachetés pantropicaux et l’impact de stimuli chimiques chez la Baleine à bosse est étudié.
Nous avons volontairement fait le choix de sélectionner différentes espèces produisant des types de signaux bien différents (stationnaires vs transitoires) évoluant dans des milieux différents (marins vs terrestres) afin d’homogénéiser les méthodes d’analyses pour faciliter le développement de nouvelles études en bioacoustique. Chaque cas d’étude présente des résultats intéressants en terme de bioacoustique et d’écologie comportementale. Ces résultats sont comparés avec la bibliographie. Puis, les résultats de chaque cas d’étude permettent de valider les méthodes proposées dans cette thèse. Les apports méthodologiques de cette thèse sont synthétisés, comparés et discutés, notamment l’impact des signaux stationnaires et transitoires, des milieux (marin et terrestre) sur la mise en place des méthodes. Les méthodes supervisées et non supervisées sont mises en comparaison. Les méthodes proposées ont été testées et validées sur certains protocoles de données massives (plusieurs dizaines de Tera).
En conclusion, cette thèse montre que les méthodes supervisées (notamment le Deep Learning) étaient très bien adaptées pour la classification de signaux stationnaires en bioacoustique spécifique et populationnelle pour le milieu terrestre et marins. Puis les méthodes non supervisées (clustering et réduction de dimensionnalité) peuvent être utilisées dans le cadre des études en bioacoustique comportementale pour identifier les signaux d’intérêt. Enfin, la bioacoustique individuelle peut se traduire par des méthodes de localisation comme l’estimation du temps de délais d’arrivée inter-capteur, réalisable pour les signaux transitoires, et plus complexe pour les signaux stationnaires.

Mots-clés : Bioacoustique, Masse de données, Espèce, Population, Individu, Localisation, apprentissage supervisé et non supervisé.

Abstract

The objective of this thesis is to make different methodological contributions in bioacoustics for the study of fauna. Bioacoustics is a recent multidisciplinary science and is very effective for studying and classifying an ecosystem. Many past studies have developed acoustical methods to analyze wildlife across (1) specific, (2) populational, (3) individual and (4) behavioral scales. The research presented in this thesis aims to study different case methods in the four scales of analysis listed above while also setting up tools from the setup of the acquisition material to the analysis of the data for all the aforementioned scales, and finally the discussion of the studies and putting them into perspective. In this study, (1) specific bioacoustics were illustrated by the automatic classification of orcas, sperm whales, and birds. The acoustic classification of orca clans were studied for (2) population analysis. Then the scale was refined and (3) individual acoustic emissions were studied through three different case studies : the individual locations of orcas, sperm whales, and birds. The last scale evaluated was (4) behavioral bioacoustics which aimed to correlate behaviors with acoustic emissions. In order to correlate certain behaviors with acoustic emissions, the influence of maritime traffic on pantropical spotted dolphins and the impact of chemical stimuli in humpbacks were evaluated and recorded. We deliberately chose to select a diverse pool of species that would produce a variety of different signals (stationary vs. transient) and had evolved in different nvironments (marine vs. terrestrial). This allows us to standardize analysis methods in order to facilitate the development of new studies in bioacoustics. Each case study showed interesting results in terms of bioacoustics and behavioral ecology. These results were compared with past studies which can be found in the bibliography. The results of each case study validated the methods proposed in this thesis. In particular, our study yielded excellent results in the evaluation of bird songs and is now a sound-recognition application available on any type of mobile phone, making it easy to identify bird species. The methodological contributions of this thesis, specifically the difference between stationary and transient signals and those of marine or terrestrial evolution, were synthesized, compared, and discussed. Supervised and unsupervised methods were also compared. These proposed methods have been tested and validated using massive data (several tens of Tera), which are unique. In conclusion, this thesis shows that supervised methods, in particular Deep Learning, are very well suited for the classification of stationary signals in specific and population-based ioacoustics for the terrestrial and marine environment. We also derived that unsupervised methods such as clustering and reduction of dimensionality, can be used within the framework of behavioral bioacoustics to identify signals of interest. Finally, individual bioacoustics can be translated into localization methods such as estimating the inter-sensor delay time which is feasible for transient signals and more complex for stationary signals.

Keywords : Bioacoustics, Big data, Species, Populations, Individuals, localization, Unsupervised and Supervised Learning.

 

20-11-2020 : Lancement du projet Région PACA sur les interactions entre drone et plongeur (DPII)

DPII, c’est parti !

Nous avons le plaisir de vous annoncer le lancement du projet Région PACA DPII.

Ce projet pluridisciplinaire durera 3 ans. Il est co-financé oar la société Notiloplus, la région PACA et l’Université de Toulon. Il est porté par le pole INPS de l’université de Toulon.

Nous espérons qu’il permette de fédérer de nombreux partenaires locaux et génère une dynamique recherche autour de ses thématiques . 

Description du projet

Emboîtant le pas à leurs homologues aériens, les drones sous-marins sont maintenant disponibles pour le grand public à des coûts abordables. Parmi eux, le robot autonome IBubble de la société NOTILO PLUS a fait une percée technologique majeure en développant un nouveau mode de téléopération sous-marine : le plongeur est équipé d’une télécommande qui permet au drone de le localiser et qui lui permet de modifier le mode de fonctionnement du drone en cours de plongée. Ce mode d’interaction inédit a jeté les prémices d’une coopération entre le drone et le plongeur qu’il suit. 

Cependant, l’interaction reste limitée à une relation maître-esclave, réduite à sélectionner un comportement parmi une liste préenregistrée. Dans ce projet, nous proposons de faire évoluer cette relation maitre-esclave en intégrant le robot plus étroitement dans la palanquée. Cette émancipation du robot sera obtenue en lui donnant des moyens sensoriels performants, des capacités cognitives adaptées, et en lui conférant un pouvoir de décision suffisant pour interpréter l’attitude des plongeurs et repérer des situations problématiques, ou simplement les assister plus efficacement. 

Le projet DPII s’articule autour de 3 questions :  

  1. Existe t il des critères objectifs d’une situation accidentogène ? 
  2. Comment rendre bidirectionnelle et intuitive la communication drone-plongeur ? 
  3. La présence du drone modifie le comportement des plongeurs ?

 

25-08-2020 – Séminaire Claire DUNE et Cyrille GOMEZ

 
Le mardi 25 août auront lieu à 9h deux présentations, l’une sur le CRCT de Claire DUNE et l’autre sur le stage de master 2 de Cyrille GOMEZ à l’Ifremer
 

Claire Dune : Challenges en IA et robotique sous marine – Bilan du CRCT 2020

« Cette année, Claire a obtenu un semestre de Congés pour Recherche et Reconversion thématique. Elle a été hébergée à l’IFREMER de décembre 2019 à mars 2020. Dans ce séminaire, elle fera un retour sur cette expérience en s’appuyant sur les développements en cours et futurs à l’IFREMER en terme de déploiement des systèmes robotiques sous marins, de développement en vision sous-marine et d’IA. Elle présentera les travaux effectués ainsi que les projets déposés et à venir. ».

 

Cyrille Gomez : Etude de la robustesse des méthodes d’estimation de pose par vision pour la localisation d’une station d’amarrage.

« L’objectif de ce stage est de concevoir un système de guidage optique d’un AUV vers une station d’amarrage. Il s’agit de définir le système de marquage de la station d’accueil et le système d’asservissement lié. Nous nous sommes intéressés à l’étude de la robustesse des méthodes de détection et d’estimation de pose en vision classique pour choisir le type de marqueurs, leur nombre et leur disposition. Nous vous présenterons une comparaison de différentes chaînes de traitement d’images en air et en eau ainsi que les préconisations résultantes pour la conception du système d’amarrage. »

15 juillet 2020 – Séminaire de Federico ORLACCHIO

Federico ORLACCHIO, élève ingénieur à l’Ecole Centrale de Lyon, a réalisé un stage au sein de COSMER, supervisé par Sébastien Campocasso et Myriam Orquera.
 
Le thème est la conception pour le procédé de fabrication additive WAAM.
 
Federico nous présentera les travaux effectués ainsi que les résultats obtenus lors d’un séminaire en visio-conférence.
 
Le mercredi 15 juillet aura lieu le séminaire
de présentation du stage de Federico
de 9h30 à 10h30
 
 
Résumé:
Les procédés DED de dépôt direct, tel que le procédé Wire & Arc Additive Manufacturing (WAAM), ont des perspectives de développement importantes dans l’industrie, compte-tenu de leur capacité à produire des pièces brutes de grandes dimensions avec une bonne productivité. Les pièces peuvent être fabriquées en déposant des cordons de soudure là où cela est nécessaire, permettant ainsi d’alléger les pièces dans les zones les moins sollicitées. La plupart du temps, en suivant des méthodologies DFAM de conception pour la fabrication additive, la répartition de matériau optimale est obtenue à l’aide d’algorithmes d’optimisation topologique. Cependant, la fabricabilité par procédés DED de résultats obtenus de cette manière – contenant des « branches » – n’est pas assurée ou avec une très faible productivité (stratégies de dépôt « goutte à goutte »).
Durant la présentation, une démarche de conception sera proposée afin d’obtenir, à partir de résultats bruts d’optimisation topologique, des formes facilement réalisables par dépôt direct basées sur des formes tubulaires. L’étude sera illustrée par un cas d’étude issu du domaine aérospatial.
A partir d’une conception conventionnelle (prévue pour une obtention par usinage dans la masse), les résultats d’optimisation topologique obtenus par un logiciel commercial seront d’abord présentés. Puis, les différentes étapes de conception et d’optimisation permettant de transformer la géométrie jusqu’au modèle tubulaire optimisé seront détaillées. Enfin, les résultats finaux seront comparés par rapport à la conception initiale et aux résultats bruts d’optimisation topologique, en termes de masse et de comportement mécanique.
 

9 juillet 2020 à 10 h – Soutenance de thèse de Maxime Chalvin

Monsieur Maxime CHALVIN

doctorant au laboratoire COSMER

rattaché à l’Ecole Doctorale 548 « Mer & Sciences »,

sous la direction de Monsieur Vincent HUGEL, Professeur à l’Université de Toulon,

co-encadré par Monsieur Sébastien CAMPOCASSO, Maître de conférences à l’Université de Toulon,

soutiendra publiquement sa thèse en vue de l’obtention du Doctorat

Discipline : « Mécanique des solides, génie mécanique, productique, transport et génie civil »

sur le thème

Fabrication additive de tubulures par dépôt de fil robotisé multi-axes : Génération et optimisation de trajectoires

 

Jeudi 9 Juillet 2020 à 10h00

en visioconférence (Crise sanitaire – Covid-19)

devant un jury composé de

M. Sylvain LAVERNHE, Professeur, Université Paris-Saclay, Rapporteur
M. Richard BEAREE, Professeur, Arts et Métiers, Rapporteur
M. Benoît FURET, Professeur, Université de Nantes, Examinateur
Mme Hélène CHANAL, Maître de conférences HDR, SIGMA Clermont, Examinatrice
M. Thomas BAIZEAU, Ingénieur Docteur, Poly-Shape, Examinateur
M. Sébastien CAMPOCASSO, Maître de conférences, Université de Toulon, Co-encadrant
M. Vincent HUGEL, Professeur, Université de Toulon, Directeur de thèse

Résumé

La fabrication additive par dépôt sous énergie concentrée (DED) permet la fabrication rapide de petites séries de pièces. Cependant, les trajectoires usuellement utilisées pour les pièces présentant du porte-à-faux nécessitent l’utilisation de supports, matériau non utile à la pièce finale dont le dépôt et l’enlèvement sont chronophages. Si les trajectoires multi-axes permettent de s’en passer, elles présentent généralement des distances locales inter-couches hétérogènes, nécessitant d’ajuster la hauteur de couche par la paramétrie de dépôt, pouvant alors impacter les caractéristiques mécaniques de la pièce finie. Cette thèse propose, dans un premier temps, une méthode de génération de trajectoire multi-axes à distance locale inter-couches constante pour des tubulures définies par des courbes guides paramétrées et pouvant présenter des variations de rayon de profil. Les trajectoires proposées ont ensuite été validées par la fabrication additive robotisée de démonstrateurs en matériau polymère. La rotation autour de l’axe d’un outil de dépôt coaxial n’ayant pas d’incidence sur le dépôt, l’utilisation de robots 6-axes admet une redondance. En utilisant cette redondance, une méthode d’optimisation couche par couche de la trajectoire dans l’espace articulaire est finalement proposée. Pour une configuration de robot contrainte, l’optimisation permet la fabrication de pièces impossibles à produire de manière classique et apporte une amélioration de leur qualité géométrique ainsi qu’une meilleure répétabilité.

Mot clés : Fabrication additive, Dépôt sous énergie concentrée, Dépôt de fil robotisé, Génération de trajectoires, Distance locale inter-couches constante, Pièces tubulaires, Optimisation couche par couche.

 

 

24 juin 2020 – soutenance de thèse de Nicolas Gartner

Le Bureau des Études Doctorales a le plaisir de vous informer que

Monsieur Nicolas GARTNER

doctorant au laboratoire COSMER

rattaché à l’Ecole Doctorale 548 « Mer & Sciences »,

sous la direction de Monsieur Vincent HUGEL (COSMER), Professeur à l’université de Toulon

Coencadré par Monsieur Mathieu RICHIER, Maitre de conférences, Université de Toulon

soutiendra publiquement sa thèse en vue de l’obtention du Doctorat

Discipline : « Automatique, signal, productique, robotique »

sur le thème

 

Identification de paramètres hydrodynamiques par simulation avec Smoothed Particle Hydrodynamics

mercredi 24 juin 2020 à 10h00

en visioconférence (Crise sanitaire – Covid-19)

devant un jury composé de

M. Frédéric BOYER, Professeur, IMT Atlantique Nantes, Rapporteur
M. Guillaume OGER, Ingénieur de Recherche-HDR, Ecole Centrale de Nantes, Rapporteur
M. Vincent CREUZE, Maître de conférences -HDR, Université de Montpellier, Examinateur
Mme Claire DUNE, Maître de conférences, Université de Toulon, Examinatrice
M. Luc JAULIN, Professeur des universités, ENSTA Bretagne, Examinateur
Mme Elisabeth MURISASCO, Professeur des universités, Université de Toulon, Examinatrice
M. Mathieu RICHIER, Maître de conférences, Université de Toulon, co-encadrant de thèse
M. Vincent HUGEL, Professeur des universités, Université de Toulon, Directeur de thèse.

Résumé

Cette thèse porte sur les techniques de simulations des interactions dynamiques entre un véhicule sous-marin et l’eau qui l’entoure. L’objectif principal est de proposer une solution satisfaisante pour pouvoir, en amont du processus de conception, tester des algorithmes de contrôle et des formes de coques pour véhicules sous-marins. Il serait alors intéressant de pouvoir simuler en même temps la dynamique du solide et celle du fluide. L’idée développée dans cette thèse est d’utiliser la technique Smoothed Particles Hydrodynamics (SPH), qui est très récente et qui modélise le fluide comme un ensemble de particules sans maillage. Afin de valider les résultats de simulations une première étude a été réalisée avec un balancier hydrodynamique. Cette étude a permis la mise au point d’une méthode innovante d’estimation de paramètre hydrodynamique (forces de frottement et masse ajoutée) qui est plus robuste que les méthodes existantes lorsqu’il est nécessaire d’utiliser des dérivées numériques du signal mesuré. Ensuite, l’utilisation de deux types de solveur SPH : Weakly Compressible SPH et Incompressible SPH, est validée en suivant la démarche de validation proposée dans cette thèse. Sont étudiés, premièrement, le comportement du fluide seul, deuxièmement, un cas hydrostatique, et enfin un cas dynamique. L’utilisation de deux méthodes de modélisation de l’interaction fluide-solide : la méthode de réflexion de la pression et la méthode d’extrapolation est étudiée. La capacité d’atteindre une vitesse limite due aux forces de frottement est démontrée. Les résultats d’estimation des paramètres hydrodynamiques à partir des essais de simulation est finalement discutée. La masse ajoutée simulée du solide s’approche de la réalité, mais les forces de frottement semblent actuellement ne pas correspondre à la réalité. Des pistes d’améliorations pour pallier ce problème sont proposées.

Mot clés : Paramètres hydrodynamiques, SPH, Méthode numérique, Interaction, Fluide-solide, Fluide-structure, écoulement incompressible, Robotique sous-marine.

 

 

IEEE IROS 2020 : Workshop on Managing deformation: A step towards higher robot autonomy

Notre proposition de workshop pour la conférence IROS 2020 sur le controle des objets déformables  a été accepté.

Il aura lieu le 25 octobre 2020, à Las Vegas.

La capacité d’interagir avec des objets déformables de toute taille est une condition préalable à l’autonomie avancée des robots. Selon la taille de l’objet, le développement de ces compétences peut impliquer tous les degrés de liberté d’un ou plusieurs systèmes robotiques, et même la mobilité d’une plate-forme active. Ces compétences sont nécessaires dans de multiples domaines, allant de la préhension et de la manipulation d’objets quotidiens (nourriture, vêtements, etc.) en robotique de consommation, aux procédures robotisées chirurgicales (manipulation de tissus, guidage d’aiguilles flexibles, etc.), à la collecte de produits agricoles ou au déplacement de grands objets flexibles (tels que des câbles, des cordes et des tentes).
Cependant, la prise en compte de la déformation introduit notamment de nouveaux défis :
 

  1. La complication de la détection de la déformation
  2. La malédiction de la dimensionnalité infinie de la configuration de déformation
  3. La complexité de la forte non-linéarité dans la modélisation de la déformation

De nouveaux paradigmes sont nécessaires pour relever ces défis. L’objectif de ce workshop est donc de discuter des nouvelles perspectives de recherche en tenant compte de la déformation de l’objet dans diverses applications robotiques.

L’appel a participation va être lancé très prochainement, vous pouvez retrouver toutes les informations sur le site du workshop :

https://sites.google.com/view/madef-iros2020/home