Cosmer au GT Robotique marine et sous-marine du 28 juin 2019

Nicolas Gartner représentera la laboratoire COSMER lors du groupe de travail de robotique marine et sous-marine le 28 juin 2019 à l’ISIR. Il présentera ses travaux intitulés « Simulation de la dynamique des véhicules marins dans leur environnement avec la méthode SPH ».

Résumé : Simuler la dynamique des véhicules marins dans leur environnement présente un enjeu majeur pour vérifier l’efficacité des lois de commande dynamique, évaluer la manœuvrabilité du véhicule ou encore simuler des missions dans un environnement perturbé (plage, courant fort). En effet, ceci nécessite actuellement de mettre en place des séries d’essais coûteuses et longues. L’objectif ici est d’avoir un simulateur réaliste, qui simule l’environnement dans lequel se trouve le véhicule et qui fonctionne en quasi temps réel. Cet exposé décrira les différentes méthodes applicables pour simuler la dynamique des véhicules marins et donnera les motivations qui ont conduit à retenir une solution avec un fluide simulé sans maillage. Nous expliquerons ensuite brièvement la méthode utilisée et présenterons des expériences et les résultats obtenus jusqu’à présent.

 

11 juillet 2019- Séminaire Manon Fourniol

Manon Fourniol, doctorante au laboratoire IM2NP, présentera l’avancée de ses travaux de thèse sur le thème de la « Capture de mouvement du corps humain à l’aide de centrales inertielles embarquées pour la rééducation » le 11 juillet 2019 à 14h en salle M141.

Résumé
Dans cette présentation traitant de mes travaux de thèse je commencerai par parler de dispositifs de réveils basse consommation basés sur l’analyse de la fréquence pour l’internet des objets, avant d’aborder le sujet de la capture de mouvement du corps humain à l’aide de capteurs inertiels embarqués.
La capture de mouvement du corps humain est largement utilisée dans divers domaines comme la robotique, la réalité virtuelle ou bien la médecine ou la biomécanique. Différentes solutions ont fait l’objet de recherches ces dernières années, en particulier des solutions optiques, basées sur l’utilisation d’une ou plusieurs caméras, ont émergé, mais aussi des solutions mécaniques, électromagnétiques ou inertielles. Dans notre cas d’étude, c’est sur l’utilisation de capteurs inertiels embarqués que nous avons axé notre recherche, afin d’aider à la rééducation de personnes. En effet, l’accéléromètre et le gyroscope sont des capteurs bruités et avec une dérive importante que l’on souhaite corriger, en travaillant notamment sur la calibration de ces capteurs et l’utilisation de filtres en embarqué, comme le filtre de Kalman-Busy ou le filtre de Kalman Étendu. Notre objectif étant de détecter si la personne fait ou non les bons mouvements afin de permettre à terme aux patients d’être autonomes dans leurs exercices quotidiens de rééducation.

Projet : Banc d’optimisation de vélo

 

Benjamin OSTRE, enseignant-chercheur à l’école d’ingénieurs SeaTech et au laboratoire COSMER, travaille avec Josserand de BRANCION et Frédéric GALERY, deux de ses étudiants, à la réalisation d’un banc d’optimisation de vélo.

Capable de s’adapter à toutes les morphologies, il permettra aux cyclistes d’avoir une meilleure idée de leurs besoins grâce à une optimisation de leur position.

Etude posturale sur le banc d’optimisation

Les données récoltées permettront également à l’enseignant-chercheur, spécialiste de l’optimisation topologique, de concevoir des structures innovantes, inspirées de la nature.

Premiers résultats d’optimisation topologique : cas d’une potence

13 juin 2019 – Séminaire Jihong Zhu

 

 

Jihong Zhu, doctorant au LIRMM, exposera ses travaux le jeudi 13 juin à 14h en salle M141 sur la manipulation de câble assistée par vision.

 

 

 

Title: Dual arm robotic manipulation of deformable linear objects with environmental contacts.

Abstract:

One of the biggest challenges in deformable objects manipulation lies in the limited control inputs while manipulation – The infinite degree of freedoms (DOFs) in object deformation with finite inputs from the manipulators/hands. Often when manipulating deformable objects, humans not only apply both hands, but also use contacts in the environment to regulate objects. In this talk, I will present a framework for a dual arm robot to manipulate deformable linear objects (DLOs) with contacts in the environment. The robot is able to plan its motion according to the contact placement, detect the occurrence of a contact, and modify its manipulation behaviour accordingly and finally achieve a desired configuration of the DLOs.

 

26 avril 2019 : Soutenance de Thèse de Matheus LARANJEIRA

C’est avec plaisir que nous vous invitons à venir assister à la soutenance de thèse de Matheus Laranjeira,
 
Le 26 avril 2019 à 10h30, amphithéatre du batiment M,
 
Titre de la thèse

« Asservissements visuels sur des objets déformables : une application au control d’ombilicaux sous-marins »

 
 
 

Résumé
« Cette thèse porte sur le problème du contrôle de la forme d’ombilicaux pour des petits robots sous-marins télécommandés (mini-ROVs), qui conviennent, grâce à leur petite taille et grande manoeuvrabilité, à l’exploration des eaux peu profondes et des espaces encombrés. La régulation de la forme de l’ombilical est cependant une tâche difficile, car ces robots n’ont pas une puissance de propulsion suffisante pour contrebalancer les forces de traînée du câble. Pour faire face à ce problème, nous avons introduit le concept de Cordée de mini-ROVs, dans lequel plusieurs robots sont reliés à l’ombilical et peuvent, ensemble, contrebalancer les perturbations extérieures et contrôler la forme du câble.
 
Nous avons étudié l’utilisation des caméras embarquées pour réguler la forme d’une portion de l’ombilical reliant deux robots successifs, un leader et un suiveur. Seul le robot suiveur se chargera de la tâche de régulation de la forme du câble. Le leader est libéré pour explorer ses alentours. L’ombilical est supposé être légèrement pesant et donc modélisé par une chaînette. Les paramètres de forme du câble sont estimés en temps réel par une procédure d’optimisation non-linéaire qui adapte le modèle de chaînette aux points détectés du câble dans les images des caméras.
 
La régulation des paramètres de forme est obtenue grâce à une commande reliant le mouvement du robot à la variation de la forme de l’ombilical. L’asservissement visuel proposé s’est avéré capable de contrôler correctement la forme du câble en simulations et expériences réalisées en basin. »

25.04.2019 : Séminaire de David Navarro Alarcon

Titre
Asservissement de forme d’objets déformables : Modélisation, estimation et contrôle

Résumé
Au cours des dernières années, on s’est intéressé de plus en plus à la conception de méthodes guidées par capteurs pour contrôler la forme d’objets déformables à l’aide de manipulateurs robotisés. Ce problème de contrôle de forme a de nombreuses applications potentielles dans des domaines en pleine croissance tels que la robotique chirurgicale, la transformation alimentaire automatisée, l’industrie du vêtement, la robotique domestique, etc. J’appelle ces types de tâches de rétroaction l’asservissement de forme (visuelle), une approche qui contraste avec l’asservissement visuel standard (œil en main) – à la Chaumette – en ce sens que le servo-loop est formulé en fonction de la forme déformable de l’objet et non en fonction de la pose rigide du robot/de l’objet.
Mon objectif dans cet exposé est de présenter la formulation de base de ce nouveau type de tâches de manipulation guidée par capteur. Pour faire face à ce problème de manipulation difficile (et toujours ouvert), nous avons développé ces dernières années une nouvelle méthodologie basée sur la vision qui nous permet de : caractériser la forme de l’objet dimensionnel infini avec un vecteur compact de paramètres de rétroaction, estimer/approximer en ligne les propriétés de déformation d’un corps mou manipulé inconnu, et contrôler explicitement la forme/déformation de l’objet par un robot actif. Je vais vous présenter nos travaux récents sur ce problème. Des exemples de nos méthodes, algorithmes et estimateurs basés sur la vision seront démontrés ; des problèmes ouverts, des défis et des opportunités seront également discutés.

Bio
David Navarro-Alarcon est professeur adjoint (Robotique) au Département de génie mécanique de l’Université polytechnique de Hong Kong (PolyU) et chercheur principal du Robotics and Machine Intelligence Laboratory. Avant de rejoindre PolyU en juillet 2017, il a travaillé au CUHK T Stone Robotics Institute de 2014 à 2017, d’abord comme boursier postdoctoral, puis comme professeur assistant de recherche. Ses intérêts de recherche comprennent le génie robotique, l’intelligence des machines, les systèmes adaptatifs et la théorie du contrôle. Il a obtenu son doctorat en janvier 2014 à l’Université chinoise de Hong Kong sous la supervision du professeur Yun-hui Liu. David est membre de l’IEEE, de la Robotics and Automation Society et de la Computational Intelligence Society.

 

Le séminaire sera retransmis en direct au LIS, site de Marseille.